Biosecurity Testing of Horizontal Grinders

Paul Lemieux¹, Shannon Serre¹, Joseph Wood¹, Worth Calfee¹, James Thurman¹, Preston Burnette², Lori Miller³, Robert Miknis³, Sasidhar Malladi⁴, Gary Flory⁵, Michael Mayes⁶

¹ US EPA; ² Jacobs Technology Inc; ³ USDA, Animal and Plant Health Inspection Service; ⁴ University of Minnesota Secure Food Systems Team; ⁵ GA Flory Consulting; ⁶ North Carolina Department of Agriculture and Consumer Services

Background

- African Swine Fever (ASFv) is a Hemorrhagic fever (similar to Ebola virus) but only affects pigs
- Highly contagious and fatal to pigs
- Threatens \$40 Billion Industry in US

Mortality Management Approaches

- Potential need for 3 million lb/day disposal capacity
- Safe, bio-secure, on-farm management is preferred; composting is popular management technology in NC and other states
- Composting large, whole animals can take up to a year; grinding can reduce the time to a month
- Grinding equipment, such as that used in rendering plants, has high capacity but limited availability and long lead time
- Need evaluation of horizontal grinders (industrial-scale wood chippers) to grind carcasses, along with a carbon source, prior to composting
- Conduct biosecurity evaluation of grinding process

Objectives

- Assess biosecurity of grinding operations
 - Focus on potential air emissions of viral particles
 - Model air dispersion to support development of USDA/APHIS SOP
 - Assess cleaning and disinfection of grinder following use

What We've Learned from Initial Testing

Knowns

- Size-reduced pigs mixed with carbon source via grinding process compost very well
- 131 °F for 3 days = target conditions for virus inactivation

Unknowns

- Can grinders be used off the shelf?
- Do virus particles escape the grinding process?

Assumptions

- Grinding ASFv-impacted carcasses could result in virus being contained in aerosols, droplets and tissue particles
- Majority of airborne particles produced by grinder are coming off end of conveyor belt as the material falls to ground and some gets entrained into the wind
- Porcine DNA as surrogate for infectious particles polymerase chain reaction (PCR) analysis of filters can generate numbers in units of ng pig DNA/m³

Approach

- Measure emissions from grinder for emission factor calculation
 - Particulate matter (PM) sampling devices positioned close to end of conveyor
 - High Volume (1000 L/min) PM₁₀ sampler (collect PM < 10 μm)
 - Dry Filter Unit (DFU) (900 L/min) sampler (collect total filterable PM)
 - Emission factor in units of ng pig DNA/kg pigs
- Perimeter air monitoring
 - High Volume PM₁₀ sampler/DFU paired
- Meteorological data from Horticultural Research Center
- Air modeling by EPA using AERMOD
- Infectious risk calculations by University of Minnesota Secure Food Systems Team

Future Work

- Perform another round of testing in June 2021
- Improve particle size distribution measurements using cascade impactor samples
- Add mitigation procedures
 - Deflector plate at end of conveyor
 - Misting to minimize aerosolization
- Improve assumptions in risk calculations (e.g., currently assume viral titer in whole pig is same as blood titer)
- Develop Concept of Operations (CONOPS) for Cleaning and Disinfection (C&D) of grinder following use
- Examine potential for use of additives to reduce viral load (e.g., lime, citric acid)

DISCLAIMER: The U.S. Environmental Protection Agency through its Office of Research and Development collaborated in the research described here under interagency. Agreement 18-9200-0497 with USDA/APHI has been subjected to the Agency S review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Mention of trade names, prod